Math 253 Exam 1 Review Name:

1. Show that every member of the family of functions

B 1+ ce!
1 — cet

Y

1
is a solution of the differential equation ¢y = E(y2 —1). And then find a solution of the

1
differential equation y' = §(y2 — 1) that satisfies the initial condition y(0) = 2



2. Match the differential equations with the solution graphs labeled I-IV. Give reasons for your
answer that ensure that your choice is the only possible correct answer. By elimination is
NOT a reason!.

a. y =1+ 2%+ 192 , 1
C. y - 1+€$2+y2

b. y =xze Y d. ¢ = sin(xy) cos(zy)

L. I1I.

IT. IV.

3. Sketch the direction field of the differential equation then use it to sketch a solution curve
that passes through the given point.

a. y =zy— 22, (0,1) b. v =z +y? (0,0)

Y Y




ion is

iminat

r+y—1
sin(z) sin(y)

(c) ¥

(d) o'

answer that ensure that your choice is the only possible correct answer. By el
(b) ¥ =xz(2-y)

4. Match the differential equation with its direction field (labeled I-IV). Give reasons for your
NOT a reason!.
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calc 5. Use Euler’s method with step size 0.2 to estimate y(1), where y(x) is the solution of the
initial-value problem ¢’ = xy — 2%, y(0) = 1.



6. Use separation to determine solutions to the following initial value differential equations.

. xysin(z)
Cy = 2R ) =1
Ay == y(0)
dP
b. E:\/Pt,P(l)ZQ



calc 7. A bottle of soda pop at room temperature (72°F) is placed in a refrigerator where the
temperature is 44°F. After half an hour the soda pop has cooled to 61°F. Set up a differential
equation modeling this situation and then solve it to find an explicit function T'(¢) for the
temperature (in Fahrenheit) ¢ minutes after the soda has been placed in the refrigerator.
What will the soda’s temperature be after an hour? When will the soda hit a temperature of
50°F7?



8. Solve the following linear first-order differential equations initial value problems.

a. y' +3y = e, y(0) = -1

b. y' +y =sin(z), y(0) =1



calc 9. A tank contains 1000L of pure water. Brine that contains 0.05 kg of salt per liter of water
enters the tank at a rate of 5 L/min. Brine that contains 0.04 kg of salt per liter of water
enters the tank at a rate of 10 L/min. The solution is kept thoroughly mixed and drains from
the tank at a rate of 15 L/min. How much salt is in the tank (a) after ¢ minutes and (b) after
one hour?



