Math 256 LP 14 - 7.1 Laplace Transforms and Inverse Transforms

1. Apply the definition of a Laplace Transform directly to find F(s) for the following functions.

a.
$$f(t) = c$$
 d. $f(t) = e^{at}$

b. $f(t) = t^n$ e. $f(t) = \sin(kt)$

- 2. Here's a handy list of pre-worked-out Laplace Transforms that you can just use as you please!
 - $\mathcal{L}{c} = \frac{c}{s}$ (s > 0)
 - $\mathcal{L}{t} = \frac{1}{s^2}$ (s > 0)
 - $\mathcal{L}{t^n} = \frac{n!}{s^{n+1}}$ $(n \ge 0)$ (s > 0)
 - $\mathcal{L}{t^a} = \frac{\Gamma(a+1)}{s^{a+1}}$ (s > 0) Where $\Gamma(a+1) = \int_0^\infty x^a e^{-x} dx$ is the gamma function which extends the concept of a factorial to all complex numbers except the non-positive integers. Want more? Do a web search.
 - $\mathcal{L}\lbrace e^{at}\rbrace = \frac{1}{s-a}$ (s > a)
 - $\mathcal{L}\{\cos(kt)\} = \frac{s}{s^2 + k^2}$ (s > 0)
 - $\mathcal{L}{\sin(kt)} = \frac{k}{s^2 + k^2}$ (s > 0)
 - $\mathcal{L}{\cosh(kt)} = \frac{s}{s^2 k^2}$ (s > |k|)
 - $\mathcal{L}{\sinh(kt)} = \frac{k}{s^2 k^2}$ (s > |k|)
 - $\mathcal{L}{u(t-a)} = \frac{e^{-as}}{s}$ (s > 0) Where u(t-a) is the unit-step-function shifted via a.

3. Show that $\mathcal{L}{af(t) + bg(t)} = a\mathcal{L}{f(t)} + b\mathcal{L}{g(t)}$

4. Use the pre-determined transforms list to find the Laplace transforms of the following functions. A preliminary integration by parts may be necessary.

a.
$$f(t) = \sqrt{t} + 3t$$
 b. $f(t) = t^{3/2} - e^{-10t}$

5. Use the pre-determined transforms list to find the inverse Laplace transforms of the following functions.

a.
$$F(s) = \frac{1}{s} - \frac{2}{s^{5/2}}$$
 b. $F(s) = \frac{10s-3}{25-s^2}$